skip to main content


Search for: All records

Creators/Authors contains: "Nenkova, Ani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Named entity recognition systems achieve remarkable performance on domains such as English news. It is natural to ask: What are these models actually learning to achieve this? Are they merely memorizing the names themselves? Or are they capable of interpreting the text and inferring the correct entity type from the linguistic context? We examine these questions by contrasting the performance of several variants of architectures for named entity recognition, with some provided only representations of the context as features. We experiment with GloVe-based BiLSTM-CRF as well as BERT. We find that context does influence predictions, but the main factor driving high performance is learning the named tokens themselves. Furthermore, we find that BERT is not always better at recognizing predictive contexts compared to a BiLSTM-CRF model. We enlist human annotators to evaluate the feasibility of inferring entity types from context alone and find that humans are also mostly unable to infer entity types for the majority of examples on which the context-only system made errors. However, there is room for improvement: A system should be able to recognize any named entity in a predictive context correctly and our experiments indicate that current systems may be improved by such capability. Our human study also revealed that systems and humans do not always learn the same contextual clues, and context-only systems are sometimes correct even when humans fail to recognize the entity type from the context. Finally, we find that one issue contributing to model errors is the use of “entangled” representations that encode both contextual and local token information into a single vector, which can obscure clues. Our results suggest that designing models that explicitly operate over representations of local inputs and context, respectively, may in some cases improve performance. In light of these and related findings, we highlight directions for future work. 
    more » « less
  2. null (Ed.)
    Abstract Objective Randomized controlled trials (RCTs) are the gold standard method for evaluating whether a treatment works in health care but can be difficult to find and make use of. We describe the development and evaluation of a system to automatically find and categorize all new RCT reports. Materials and Methods Trialstreamer continuously monitors PubMed and the World Health Organization International Clinical Trials Registry Platform, looking for new RCTs in humans using a validated classifier. We combine machine learning and rule-based methods to extract information from the RCT abstracts, including free-text descriptions of trial PICO (populations, interventions/comparators, and outcomes) elements and map these snippets to normalized MeSH (Medical Subject Headings) vocabulary terms. We additionally identify sample sizes, predict the risk of bias, and extract text conveying key findings. We store all extracted data in a database, which we make freely available for download, and via a search portal, which allows users to enter structured clinical queries. Results are ranked automatically to prioritize larger and higher-quality studies. Results As of early June 2020, we have indexed 673 191 publications of RCTs, of which 22 363 were published in the first 5 months of 2020 (142 per day). We additionally include 304 111 trial registrations from the International Clinical Trials Registry Platform. The median trial sample size was 66. Conclusions We present an automated system for finding and categorizing RCTs. This yields a novel resource: a database of structured information automatically extracted for all published RCTs in humans. We make daily updates of this database available on our website (https://trialstreamer.robotreviewer.net). 
    more » « less